Baer and Quasi-Baer Modules over Some Classes of Rings
نویسندگان
چکیده
منابع مشابه
On quasi-baer modules
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
متن کاملBAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS
A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...
متن کاملLocally Compact Baer Rings
Locally direct sums [W, Definition 3.15] appeared naturally in classification results for topological rings (see, e.g.,[K2], [S1], [S2], [S3], [U1]). We give here a result (Theorem 3) for locally compact Baer rings by using of locally direct sums. 1. Conventions and definitions All topological rings are assumed associative and Hausdorff. The subring generated by a subset A of a ring R is denote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyungpook mathematical journal
سال: 2011
ISSN: 1225-6951
DOI: 10.5666/kmj.2011.51.4.375